258 research outputs found

    Super coset space geometry

    Get PDF
    Super coset spaces play an important role in the formulation of supersymmetric theories. The aim of this paper is to review and discuss the geometry of super coset spaces with particular focus on the way the geometrical structures of the super coset space G/H are inherited from the super Lie group G. The isometries of the super coset space are discussed and a definition of Killing supervectors - the supervectors associated with infinitesimal isometries - is given that can be easily extended to spaces other than coset spaces.Comment: 49 pages, 1 figure, AFK previously published under the name A. F. Schunc

    Seesaw parametrization for n right-handed neutrinos

    Full text link
    Introducing n right-handed neutrinos to the Standard Model yields, in general, massive active neutrinos. We give explicit parametrizations for the involved mixing and coupling matrices in terms of physical parameters for both the top-down and the bottom-up approach for arbitrary n. Bounds on the complex mixing angles in the bottom-up approach from perturbativity of the Yukawa couplings to charged lepton flavor violation are discussed. As a novel illustration of possible effects from n != 3, we extend the neutrino anarchy framework to arbitrary n; we show that while the anarchic mixing angles are insensitive to the number of singlets, the observed ratios of neutrino masses prefer small n for the simplest linear measure.Comment: 12 pages, 4 figures. Added references and details about the sampling algorith

    Graded Majorana spinors

    Full text link
    In many mathematical and physical contexts spinors are treated as Grassmann odd valued fields. We show that it is possible to extend the classification of reality conditions on such spinors by a new type of Majorana condition. In order to define this graded Majorana condition we make use of pseudo-conjugation, a rather unfamiliar extension of complex conjugation to supernumbers. Like the symplectic Majorana condition, the graded Majorana condition may be imposed, for example, in spacetimes in which the standard Majorana condition is inconsistent. However, in contrast to the symplectic condition, which requires duplicating the number of spinor fields, the graded condition can be imposed on a single Dirac spinor. We illustrate how graded Majorana spinors can be applied to supersymmetry by constructing a globally supersymmetric field theory in three-dimensional Euclidean space, an example of a spacetime where standard Majorana spinors do not exist.Comment: 16 pages, version to appear in J. Phys. A; AFK previously published under the name A. F. Schunc

    Reconstructing the two right-handed neutrino model

    Full text link
    In this paper we propose a low-energy parametrization of the two right-handed neutrino model, and discuss the prospects to determine experimentally these parameters in supersymmetric scenarios. In addition, we present exact formulas to reconstruct the high-energy leptonic superpotential in terms of the low-energy observables. We also discuss limits of the three right-handed neutrino model where this procedure applies.Comment: 28 pages, 4 figures. Typos corrected, references adde

    Correlation entropy of synaptic input-output dynamics

    Full text link
    The responses of synapses in the neocortex show highly stochastic and nonlinear behavior. The microscopic dynamics underlying this behavior, and its computational consequences during natural patterns of synaptic input, are not explained by conventional macroscopic models of deterministic ensemble mean dynamics. Here, we introduce the correlation entropy of the synaptic input-output map as a measure of synaptic reliability which explicitly includes the microscopic dynamics. Applying this to experimental data, we find that cortical synapses show a low-dimensional chaos driven by the natural input pattern.Comment: 7 pages, 6 Figures (7 figure files

    Breather trapping and breather transmission in a DNA model with an interface

    Get PDF
    We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule. This is a DNA chain in which all the base pairs are identical and there exists an interface such that the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian of the Peyrard--Bishop model is augmented with a term that includes the dipole--dipole coupling between base pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic energy of a moving breather launched towards the interface is below a critical value, it is trapped in a region around the interface collecting vibrational energy. For an energy larger than the critical value, the breather is transmitted and continues travelling along the double strand with lower velocity. Reflection phenomena never occur. The same study has been carried out when a single dipole is oriented in opposite direction to the other ones. When moving breathers collide with the single inverted dipole, the same effects appear. These results emphasize the importance of this simple type of local inhomogeneity as it creates a mechanism for the trapping of energy. Finally, the simulations show that, under favorable conditions, several launched moving breathers can be trapped successively at the interface region producing an accumulation of vibrational energy. Moreover, an additional colliding moving breather can produce a saturation of energy and a moving breather with all the accumulated energy is transmitted to the chain.Comment: 15 pages, 11 figure

    Continuous non-perturbative regularization of QED

    Full text link
    We regularize in a continuous manner the path integral of QED by construction of a non-local version of its action by means of a regularized form of Dirac's δ\delta functions. Since the action and the measure are both invariant under the gauge group, this regularization scheme is intrinsically non-perturbative. Despite the fact that the non-local action converges formally to the local one as the cutoff goes to infinity, the regularized theory keeps trace of the non-locality through the appearance of a quadratic divergence in the transverse part of the polarization operator. This term which is uniquely defined by the choice of the cutoff functions can be removed by a redefinition of the regularized action. We notice that as for chiral fermions on the lattice, there is an obstruction to construct a continuous and non ambiguous regularization in four dimensions. With the help of the regularized equations of motion, we calculate the one particle irreducible functions which are known to be divergent by naive power counting at the one loop order.Comment: 23 pages, LaTeX, 5 Encapsulated Postscript figures. Improved and revised version, to appear in Phys. Rev.

    Ultraviolet Complete Electroweak Model Without a Higgs Particle

    Full text link
    An electroweak model with running coupling constants described by an energy dependent entire function is utraviolet complete and avoids unitarity violations for energies above 1 TeV. The action contains no physical scalar fields and no Higgs particle and the physical electroweak model fields are local and satisfy microcausality. The WW and ZZ masses are compatible with a symmetry breaking SU(2)L×U(1)Y→U(1)emSU(2)_L\times U(1)_Y \rightarrow U(1)_{\rm em}, which retains a massless photon. The vertex couplings possess an energy scale ΛW>1\Lambda_W > 1 TeV predicting scattering amplitudes that can be tested at the LHC.Comment: 19 pages, no figures, LaTex file. Equation and text corrected. Reference added. Results remain the same. Final version published in European Physics Journal Plus, 126 (2011

    Improving Web Design Methods with Architecture Modeling

    Full text link
    • …
    corecore